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Abstract

We explore causal structures in physics and present recent results on the study of indefinite causal structures in quantum
mechanics. These results include the causal inequality, nonseparable causal processes and results relating to computational
speedup through the application of indefinite causal structures.

I. Introduction

Causality lies at the heart of physics. Indeed, the study
of physical systems is fundamentally concerned with
the characterisation of cause, effect and correlation.
The topic of causality in quantum mechanics has re-
cently attracted considerable attention due to a paper
by Brukner et al in 2012 [14]. In it, the authors out-
lined the emergence of indefinite causal structures for
a bipartite system in quantum mechanics. These in-
vestigations have partly been motivated by the long-
lasting difficulties of formulating a consistent theory
of quantum gravity. Discrepancies between the causal
structures of quantum mechanics and general relativity
(which we shall explore in the following sections) have
led some to speculate that an even more fundamental
theory might be required [?]. Apart from that, it has
been speculated [8], and proven [7, ?] that indefinite
causal structures lead to computational speedup.

This report is intended as a brief survey of causality
in physics and an introduction to the recent results on
indefinite causal structures in quantum mechanics. Be-
fore we begin, let us first introduce some basic notation.
A causal structure is defined based on the relationship
between two (or more) events, here referred to as A
and B. Where A causally precedes B we write A � B,
and similarly B � A. We identify three types of causal
structures that appear in physical theories; fixed causal
structures, dynamic causal structures, and indefinite causal
structures.

This report is structured as follows. In Section II

we explore fixed causal structures and the role they
play in Newtonian mechanics and quantum mechan-
ics. Similarly, in Section III we study dynamic causal
structures which arise in special and general relativity,
and relativistic quantum field theory. With these pieces
in place, we highlight some discrepancies between the-
ories in Section IV and motivate why further studies
of causality might yield interesting insights. We then
introduce indefinite causal structures in Section V, by
means of the causal inequality, followed by the process
matrix formulation which leads us to non-separable
causal processes. In addition, we make a short mention
of computational speedups obtained through this for-
malism. Finally, Section VI provides a summary and
an outline of some open questions.

II. Fixed Causal Structures

Given two events, A and B, a theory with a fixed causal
structure does not provide any information about the
causal order of A and B. In other words, the equations
of motions tell us nothing about whether A causes B,
or B causes A. Their causal relation emerges by assum-
ing the existence of a fixed global background time. To
gain further intuition, let us explore the fixed causal
structure of Newtonian mechanics (NM) and quantum
mechanics (QM).
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I. Newtonian Mechanics

Consider the simple case of two colliding billiard balls,
a red one and a blue one. The red billiard ball has
some initial momentum, which is then transferred to
the blue ball through an elastic collision. The equation
describing their interaction is given by Newton’s 2nd
Law,

F = ma. (1)

The causal structure of the above example is not ev-
ident from 1 alone. It is not clear whether F � a or
a � F - this relationship is only given by the initial
assumption that the red billiard ball had initial momen-
tum a, which then implies that a � F.

Similarly, the equations of motion for a pendulum,
or a Lagrangian used for minimisation problems do not
provide any information about in which order events
are causally related. Only by assuming some global
background time t can we determine the causal order.

II. Quantum Mechanics

Given their commonly contrasting features, it might
seem somewhat surprising that QM shares the fixed
causal structure of NM. Consider two scientists, Alice
and Bob, situated in two separate labs. Let us begin by
assuming that the labs are spacelike separated and that
Alice and Bob share the state ρAB between them. If
Alice and Bob perform operations MA and MB respec-
tively, we use the tensor product ⊗ to describe their
action on the state, namely

ρAB → MA ⊗MBρAB. (2)

We note that since non-local measurements are forbid-
den the assumption regarding the causal relationship
between Alice and Bob necessitates the use of the ten-
sor product.

Consider now a different situation where Alice
wishes to send the state ρ to Bob. Their laboratories
are timelike separated, and Alice can communicate ρ
to Bob over an ideal noiseless channel. If Alice per-
forms the operation MA on ρ before sending it, and

Bob subsequently performs MB, we write

MAρ

∣∣∣∣
Alice’s Lab

→ MAρ

∣∣∣∣
Bob’s Lab

→ MA ·MBρ

∣∣∣∣
Bob’s Lab

. (3)

Note the difference to the previous example - instead
of the tensor product, we allow Alice’s measurement to
causally precede that of Bob by using matrix multiplica-
tion. This discrepancy of the two multiplication meth-
ods has been singled as a starting point out by Hardy
who instead devised the so-called causaloid product, in-
tended to unify the two structures and thus modify the
fixed causal structure of QM [12].

In each scenario, we made an assumption about
the causal structure before we were able to perform any
calculations. The causal structure of QM is therefore
fixed, which as we shall see later presents us with some
difficulties in efforts to formulate a theory of quantum
gravity.

III. Dynamic Causal Structures

Let us now investigate two theories with a dynamic
causal structure, namely general relativity (GR) and rel-
ativistic quantum field theory (QFT). A theory with a
dynamic causal structure requires no initial assump-
tion about the ordering of events - the equations of
motion will immediately causally structure the events
for us.

I. Special and General Relativity

We start in flat spacetime, which allows us to use dis-
placement vectors xµ to denote events. We remind
ourselves of Einstein’s postulate, which states that the
speed of light is the same in every inertial frame, which
also places a limit on the speed of information transfer.

Let us now impose the restriction mathematically1.
Doing so allows us to obtain the causal relationship
between one event at the origin and one event at xµ

where µ = 0, 1, 2, 3 by examining the quantity

(x0)2 − (x1)2 − (x2)2 − (x3)2, (4)

where we have set c = 1. If we find that (x0)2 >
(x1)2 + (x2)2 + (x3)2, the vector is timelike, whereas if

1A possibility which arises by treating time and space on an equal footing - something which is not possible in QM because time cannot be
treated as an observable.
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(x0)2 ≤ (x1)2 + (x2)2 + (x3)2, the vector is spacelike or
light-like for equality.

In GR, spacetime is not flat but curved, which com-
plicates the attempt to recover the resulting causal struc-
ture. The curvature of spacetime is given by the metric
tensor, written gµν, which also provides us with a no-
tion is distance. Instead of displacement vectors xµ,
we must now consider the curve of tangent vectors,
vµ = dxµ

dλ . To learn whether two events can be causally
related, the curve connecting them must be causal - that
is, nowhere spacelike. Mathematically, we must make
sure that the quantity g(X, X) where X is a tangent
vector is nowhere negative. The causal structure fol-
lows from the equations of GR without any need for
an external assumption about a global background or
pre-existing causal relationship between two events.
[10]

II. Relativistic Quantum Field Theory

Does there exist a quantum equivalent of a dynamic
causal structure? By going to infinite Hilbert spaces
and expressing physical quantities not as quantum
states ρ but as a field, φ(x), we are able to endow rel-
ativistic QFT with a dynamic causal structure. The
causality requirement can succinctly be written down
as [11],

[φ(x), φ(y)] = 0. (5)

The commutator preserves causality in the following
way. If two operators A and B do not commute, measur-
ing A disturbs the measurement outcome of B. Thus,
measuring the field2 φ(x) at some point x disturbs the
measurement outcomes of φ(y), which would allow
for superluminal signalling.

We must therefore make sure that is everywhere
zero for equal times. By going to second quantisa-
tion and writing the field in terms of annihilation and
creation operators, a and a†, we find [16],

[φ(x), φ(y)] =
∫ d3 p

(2π)3Ep

(
e−p(x−y) − eip(x−y)

)
, (6)

where Ep is the energy, and x, y and p are position and
momentum four-vectors. We then set ~p → −~p and

choose the negative energy solution from the relativis-
tic energy relation,

E2
p = p2 + m2, (7)

where we have again set c = 1. Thus, we obtain∫ d3 p
(2π)3

(
e−ip(x−y)

Ep
+

e−ip(x−y)

−Ep

)
= 0. (8)

Remarkably, we conclude that relativistic QFT makes
use of anti-particles to preserve causality. Outside the
light cone-the potential superluminal propagation of
a particle is cancelled out by the propagation of its
anti-particle equivalent.

In summary, relativistic QFT has a dynamical causal
structure where any non-local measurements are sup-
pressed. 3 Unlike QM, the equation does not allow the
conception of a non-local measurement.

IV. The Case for Causality

Now that all the pieces are in place, we can compare
the causal structures of the various theories. We can
summarise the contents of the previous section in the
following table.

Theory Causal structure
Newtonian Mechanics Fixed
Quantum Mechanics Fixed
Special and General Relativity Dynamic
Relativistic Quantum Field Theory Dynamic

We can immediately spot a major discrepancy [12] -
the causal structure of QM is fixed, whereas the causal
structure of GR is dynamic . Given that a theory of
quantum gravity (QG) should eventually reduce to GR,
starting from quantum theory alone will not work.

One might thus be inclined to choose relativistic
QFT as a starting point, however numerous attempts
have failed to produce experimentally verifiable pre-
dictions [?]. Our guiding question should thus be: Can
we drop the assumption of a fixed causal structure in
quantum mechanics? There exist several approaches
which focus on causality with this question in mind
[1, 13, 5, 12] but we shall here explore the existence of
indefinite causal structures in QM.

2Technically, we never measure the field since we would then have to make a measurement over all space and time to measure the particles,
which are represented by normal modes. What we do measure is the expectation values of the field.

3Note that the dynamic causal structure of relativistic QFT comes from the underlying classical field theory - there is nothing inherently
quantum about the occurrence of antiparticles, they are perfectly valid objects in a classical field theory.
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V. Indefinite Causal Structures

In contrast to a fixed or dynamic causal structure, a
theory with an indefinite causal structure facilitates the
existence of processes where the causal order is not
known. In other words, an observer is not able to de-
termine whether A � B or B � A by examining the
process. As with many areas in QM, the conceptual
understanding of this topic can be aided by formulat-
ing the operational objective as a game. We shall do so
here by following the presentation in [14].

I. The Causal Inequality

Consider our two protagonists, Alice and Bob situated
in separate labs. We assume that there exists a fixed
causal structure between Alice and Bob, where Alice
causally precedes Bob, A � B. The goal of the game is
for Alice and Bob to guess the other player’s measure-
ment result a, b. Before the game starts, a coin is tossed
to produce either 0 or 1, which in turn determines
whether Alice or Bob has to make the guess. They are
then each given two states from which they obtain mea-
surement outcome a or b respectively. Finally, either
Alice or Bob produces a guess x or y.

Crucially, since Alice precedes Bob, Alice is allowed
to signal to Bob4. To find out how often they can
win the game, we maximise the probability of success,
psucc. Let us begin by analysing the situation where
Bob has to make the guess (coin toss yields heads = 0).
However, since Alice signalled to Bob and told him
her measurement outcome, he can essentially perform
perfectly. Thus, p(y = a|0) = 1. However, if Alice
has to guess, she has no information whatsoever about
Bob’s measurement outcome, and her best strategy is
therefore to guess randomly, giving p(x = b|1) = 1

2 .
Putting everything together, we find

psucc =
1
2
(p(y = a|0) + p(x = b|1)) ≤ 3

4
. (9)

This is the so-called causal inequality. Violating the
causal inequality means disproving the assumption of
a fixed causal structure. Naturally, our next step should
be an attempt to find a process that does precisely that.

II. The Process Matrix

Our investigation will be greatly helped by construct-
ing a new resource, the process matrix W, first intro-
duced in [14]. W is motivated by the need to relate the
input and output of quantum or classical systems and
it can be seen as a generalisation of a quantum state. In
other words, W describes the process which relates the
input A0, B0, C0 . . . of an unlimited number of players
A, B, C . . . with the corresponding output A1, B1, C1 . . ..

The reader is directed to [14, 2] for a full mathe-
matical derivation. In summary, the process matrix
W is defined for the bipartite case by the relation be-
tween the measurement outcome P

(
MA

i ,MB
j

)
and

the matrixMA0 A1
i ⊗MB0B1

j , which through the Choi-
Jamiolkowsky isomorphism represents the matrices
describing the measurement process. We obtain,

P
(
MA

i ,MB
j

)
= Tr

[
WA0 A1B0B1

(
MA0 A1

i ⊗MB0B1
j

)]
.

(10)
A so-calledseparable causal process can then be identified
by being able to decompose W in the following manner:

W = qWA��B + (1− q)WB��A, (11)

where 0 ≤ q ≤ 1 and A���B reads ‘A cannot signal
to B’. These process matrices describe either a fixed
causal structure (with q being either 0 or 1), or a su-
perposition of causal processes. An example of such a
superposition is the Quantum Switch (see next section).

However, we can also identify processes with non-
separable W. That is, the process they describe cannot
be written in a superposition of causal orders. Such a
process is therefore referred to as causally non-separable
process. It was shown in [14] that one such process
violates the causal inequality by

psucc =
2 +
√

2
4

>
3
4

. (12)

These causally non-separable processes have been fur-
ther explored in [2], [4], and [9] where among other
things a causal witnesssimilar to an entanglement wit-
ness was found.

III. Computational Advantages

Aside from foundational incentives, it has been sug-
gested that dropping the assumption of a fixed causal

4This introduces a significant difference from other operational scenarios, such as the CHSH game, where signalling between the parties is
strictly forbidden in order to obtain a loophole-free description of entanglement.
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structure might yield certain computational advan-
tages. Here we shall briefly outline some of them,
beginning with the Quantum Switch [8]. The Quantum
Switch can be understood as implementing a superpo-
sition of two fixed causal structures, represented by for
instance two unitary gates UA and UB which are imple-
mented either in the order UAUB or UBUA. To decide
whether UAUB or UBUA is implemented, we use a con-
trol qubit either prepared as |0〉 or |1〉 together with
the state |ψ〉. The full action of the Quantum Switch is

V(UA, UB) = |0〉 〈0| ⊗UAUB + |1〉 〈1| ⊗UBUA. (13)

The Quantum Switch can be used to probe in polyno-
mial time O(n) whether the gates commute or anti-
commute. For any regular investigation, one would
have to us one of the gates at least twice before the
relationship is clear, bringing the task to O(n2) for a
fixed causal structure. The Quantum Switch was also
recently experimentally implemented by Procopio et
al [15]. It should be pointed out, however, that the
Quantum Switch is a causally separable process, and
therefore does not violate any causal inequality. [2]

VI. Conclusions

In this report, we have explored the underlying causal
structure of some of the major physical theories, as well
as given an introduction to indefinite causal structures
in QM. We found that there exists non-separable causal

processes that violate the causal inequality, and that im-
plementations of indefinite causal structures can lead
to computational advantages.

Many open questions currently surround the field.
Firstly, many similarities between non-separable causal
processes and entangled states have been found, and
it remains to be seen whether more analogies can be
found. Furthermore, Bell’s inequality arises through
spacelike separation between Alice and Bob, while the
causal inequality relies on them being timelike sepa-
rated. Recently, spatial and temporal correlations have
been shown to be related by an isomorphism [6], which
begs the question whether the causal inequality and
Bell’s inequality are fundamentally and intrinsically
related.

There has also been some setbacks to the approach.
It has been shown by Wofl et al that indefinite causal
structures are not strictly a quantum phenomenon[3].
This, and the fact that the Quantum Switch and simi-
lar processes do not violate a causal inequality, it has
been speculated as to whether a causally non-separable
process can even be described as physical [2].

Despite these remaining difficulties, the study of
indefinite causal structures has so far already yielded
some fascinating insights into the foundations of quan-
tum theory. Over the next few years, the validity and
potential of the approach should become clear, which
could potentially open up for many exciting possibili-
ties.
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New Journal of Physics, 17(10):102001, 2015.

[3] Ä. Baumeler, A. Feix, and S. Wolf. Maximal incompatibility of locally classical behavior and global causal
order in multiparty scenarios. Physical Review A, 90(4):042106, 2014.
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